Conoid - définition. Qu'est-ce que Conoid
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Conoid - définition

A RULED SURFACE, WHOSE RULINGS (LINES) FULFILL THE ADDITIONAL CONDITIONS THAT ① ALL RULINGS ARE PARALLEL TO A PLANE (THE DIRECTRIX PLANE) AND ② ALL RULINGS INTERSECT A FIXED LINE (THE AXIS)
  • directrix plane}}}}
  • parabolic conoid: directrix is a parabola
  • conoid in architecture
  • conoids in architecture

conoid         
['k??n??d]
¦ adjective (also conoidal) chiefly Zoology approximately conical in shape.
¦ noun a conoid object.
Conoid         
·adj Resembling a cone; conoidal.
II. Conoid ·noun Anything that has a form resembling that of a cone.
III. Conoid ·noun A solid formed by the revolution of a conic section about its axis; as, a parabolic conoid, elliptic conoid, ·etc.;
- more commonly called paraboloid, ellipsoid, ·etc.
IV. Conoid ·noun A surface which may be generated by a straight line moving in such a manner as always to meet a given straight line and a given curve, and continue parallel to a given plane.
Conoid         
In geometry a conoid () is a ruled surface, whose rulings (lines) fulfill the additional conditions:

Wikipédia

Conoid

In geometry a conoid (from Greek κωνος  'cone', and -ειδης  'similar') is a ruled surface, whose rulings (lines) fulfill the additional conditions:

(1) All rulings are parallel to a plane, the directrix plane.
(2) All rulings intersect a fixed line, the axis.

The conoid is a right conoid if its axis is perpendicular to its directrix plane. Hence all rulings are perpendicular to the axis.

Because of (1) any conoid is a Catalan surface and can be represented parametrically by

x ( u , v ) = c ( u ) + v r ( u )   {\displaystyle \mathbf {x} (u,v)=\mathbf {c} (u)+v\mathbf {r} (u)\ }

Any curve x(u0,v) with fixed parameter u = u0 is a ruling, c(u) describes the directrix and the vectors r(u) are all parallel to the directrix plane. The planarity of the vectors r(u) can be represented by

det ( r , r ˙ , r ¨ ) = 0 {\displaystyle \det(\mathbf {r} ,\mathbf {\dot {r}} ,\mathbf {\ddot {r}} )=0} .

If the directrix is a circle, the conoid is called a circular conoid.

The term conoid was already used by Archimedes in his treatise On Conoids and Spheroides.